

The Impact of a Weather Information System Display on General Aviation Pilot Workload and Performance

(or, "Can a GA pilot fly an aircraft and use a weather display at the same time?")

James P. Chamberlain, Jennifer L. Burt, & Kenneth M. Jones NASA Langley Research Center (LaRC), Hampton, VA

Joseph T. Coyne
Old Dominion University, Norfolk, VA

<u>Outline</u>

- Background Information
- Purpose of Research
- Experiment Design and Protocol
- Test Facilities and Apparatus
- Experiment Tasks
- Results and Discussion
- Conclusions

<u>Background</u>

- 27% of GA accidents involve weather
- NASA's Aviation Safety Program
 - Reduce the aircraft accident rate by a factor of 5 within 10 years and by a factor of 10 within 25 years
- Aviation Weather Information (AWIN) program element
 - Provide improved weather information to users in the National Airspace System, and
 - Foster the use of this information to improve situation awareness and decision making

Cockpit Weather Information Systems (WIS)

- Data-linked cockpit WIS are being implemented to provide strategic en route information
- WIS displays can be used in GA airplane cockpits in a variety of positions and implementations
 - Panel-mounted
 - Tethered
 - Portable

Purpose of the Workload and Relative Position (WaRP) Experiment

- Investigate the effect of using a WIS display on pilot workload, flying proficiency, and weather information retrieval time and accuracy
 - With different flying tasks, and
 - With different display positions,
 - Compared to conventional means of obtaining weather information

Experiment Design

No Display ("Just Flying")

Radio ("Aural Display")

DISPLAY TYPE

Panel WIS Display

Yoke WIS Display

Kneeboard WIS Display

Condition 1	Condition 2
Condition 3	Condition 4
Condition 5	Condition 6
Condition 7	Condition 8
Condition 9	Condition 10

VMC Task IMC Task ("Low Workload") ("High Workload")

FLIGHT TASK TYPE

- Same 10 participants assigned to each experimental cell
- Two replicates of each test condition

Dependent Measures

- Flight Path Parameter Deviation
 - Altitude, heading, and airspeed deviations (+ bank angle and vertical speed during the IMC Task)
- Subjective Assessments of Workload
 - Verbal reports using the Air Force Flight Test Center's Seven-Point Subjective Workload Estimate Scale
- Weather Information Retrieval Time and Accuracy

<u>Participants</u>

- 10 instrument rated GA pilots (5 private; 5 commercial)
- No CFIs
- Males ranging in age from 22 56
- On average, less than 500 total flight hours and approximately 30 hours during last 90 days
- No previous experience flying a C-206 or using an in-flight WIS display
- No previous experience flying for an air carrier or for the military

Experiment Protocol

<u>Activity</u>	<u>Duration</u>
Pre-Experimental Session	15 min
"Classroom" Training Session	1 hr
"In the Aircraft" Training Session	1 hr
Break and Flight Suit Fitting	30 min
Familiarization Flight	1.5 hrs
Lunch Break	1 hr
Pre-Flight Briefing	15 min
Experiment Flight	2.5 hrs
Break	15 min
Debriefing Session	30 min

Test Airplane

- NASA LaRC's Cessna 206 (C-206)
 - High-wing, fixed gear, seats six
 - Constant-speed prop, 300 HP

Airborne WIS

 Prototype data-linked WIS system developed under a cooperative research agreement with NASA by NavRadio (now part of Honeywell / Bendix-King)

WIS Display Positions

PANEL

Representative of a permanently mounted display

YOKE

Representative of a portable display "within scan"

KNEEBOARD

Representative of a portable display "outside of scan"

Flight Tasks

- VMC Task
 - Low workload environment in visual conditions
 - Assigned heading, altitude, and airspeed
- IMC Task
 - High workload environment in simulated instrument conditions
 - Holding pattern with descents

IMC Task

A = Crossing VOR

B = 1 mintum

C = 30 sec - 2 min outbound leg

 $D = 1 \min t m$

E = 1 min inbound leg

Weather Information Acquisition Tasks

- Radio
 - Look up ASOS/AWOS frequency on chart
 - Tune radio and copy automated weather report
- WIS Display
 - Locate reporting station on moving map
 - Select station and display METAR text

In-Flight Use of WIS Display

METAR TEXT

ID: KPTB

METAR KPTB 141441Z AUTO 02007KT 7SM SCT018 29/24 A2994 RMK A01

Selection of METAR reporting station

METAR text screen

Results 8

- Flight path parameter deviation
 - Preliminary results from the VMC Task
- Subjective assessments of workload, weather information retrieval time, and weather information retrieval accuracy
 - Flight Task Type
 - Display Type
 - Display Type x Flight Task Type

Altitude Deviation

Statistically, the same magnitude of altitude deviations occurred during each test condition

Heading Deviation

 Greater heading deviations occurred when participants used the Radio than when they were "Just Flying," or when they used either the Panel or Yoke WIS Display

Airspeed Deviation

Statistically, the same magnitude of airspeed deviations occurred during each test condition

<u>Discussion: Flight Path</u> <u>Parameter Deviation (VMC Task)</u>

- RMSE values were within the FAA's Practical Test Standards for the Instrument Rating
- Smallest heading deviations occurred when the WIS display was located within the instrument scan area

Workload Ratings: Flight Task Type

Flight Task Type

VMC Task < IMC Task

Workload Ratings: Display Type

- No Display = Panel WIS Display < Radio
- Panel WIS Display = Yoke WIS Display = Kneeboard WIS Display

Workload Ratings: Display Type x Flight Task Type

WIS Display always ≤ Radio during the same task

<u>Discussion: Subjective</u> <u>Assessments of Workload</u>

- Higher mean workload ratings for the IMC Task, regardless of display type
- Lower mean workload ratings for the WIS Display than for the Radio, within a given flight task type
- Panel WIS Display < Yoke WIS Display < Kneeboard WIS Display
 - Lower workload by keeping portable WIS displays within the instrument scan area

Weather Information Retrieval Time: Flight Task Type

Flight Task Type

VMC Task < IMC Task

Weather Information Retrieval Time: Display Type

WIS Display << Radio

Weather Information Retrieval Time: Display Type x Flight Task Type

WIS Display always << Radio regardless of task type

<u>Discussion: Weather</u> <u>Information Retrieval Time</u>

- Participants took 75% longer to retrieve weather information during the IMC Task, regardless of display type
- Participants retrieved weather information more than four times faster with a WIS Display
- Faster retrieval times with a WIS Display can:
 - Result in improved situation awareness for pilots
 - Equate to pilots having more time to devote to other important flight tasks

Weather Information Retrieval Accuracy: Flight Task Type

Flight Task Type

VMC Task = IMC Task

Weather Information Retrieval Accuracy: Display Type

Radio < Kneeboard WIS Display

Weather Information Retrieval Accuracy: Display Type x Flight Task Type

Display Type x Flight Task Type

 Radio / IMC < Yoke WIS Display / VMC = Kneeboard WIS Display / IMC

<u>Discussion: Weather</u> <u>Information Retrieval Accuracy</u>

- Mean accuracy levels of 95% or higher occurred during all but one test condition (i.e., Radio / IMC = 85%)
- Slightly lower overall accuracy levels were achieved during the IMC Task
- Mean accuracy levels were slightly higher with the WIS Display (in all positions) than with the Radio
- Weak support that weather information retrieval accuracy is slightly better with a WIS Display than with the Radio, especially in high-workload flying situations

Conclusions

- GA pilots' use of a WIS Display facilitates:
 - Smaller flight path parameter deviations
 - Lower workload level
 - Much quicker information retrieval
 - Slightly better retrieval accuracy
- Overall, pilots are able to fly and simultaneously access weather information slightly better when the WIS Display is located within the instrument scan area
- Use of the WIS Display did not increase workload when compared to the current method of retrieving weather information via the Radio

Backup Slides

C-206 Cockpit

Subjective Workload Estimate Scale

- 1 = Nothing to do; No system demands
- 2 = Light activity; Minimum demands
- 3 = Moderate activity; Easily managed; Considerable spare time
- 4 = Busy; Challenging but manageable; Adequate time available
- 5 = Very busy; Demanding to manage; Barely enough time
- 6 = Extremely busy; Very difficult; Non-essential tasks postponed
- 7 = Overloaded; System unmanageable; Essential tasks undone; Unsafe